TRIS-[2.2.1]- and TRIS-[2.2.2]-J-HOMOBENZENES

Gabrielle McMullen, Gottfried Sedelmeier, Rainer Hildebrand, Hans Fritz,

Horst Prinzbach *

Chemisches Laboratorium der Universität Freiburg i.Br., BRD

<u>Abstract</u>: Tris-[2.2.1] - and tris-[2.2.2]- σ -homobenzenes are synthesised by reaction of 1,1'-bicyclobutenyl with appropriate dienophiles and hydrogenation of the adducts.

For [2+2+2]-cycloreversions of the type $\underline{1} \rightarrow \underline{3}$, the "homoaromatic" stabilisation of the transition states $\underline{2}$ is very much dependent on the length of the bridges (X). In the case of the [1.1.1]- as well as the [2.1.1]-framework, this process is thermally favoured and occurs still more readily for the <u>cis</u>- than for the <u>trans</u>-geometry 1). The sterically determined limits of the "homoaromaticity" for this process (selectiv-

ity, stereochemistry) should be attained by means of the [2.2.1]- and [2.2.2]-homologues with their 11- and 12-membered transition states resp. In view of the considerable activity in the area of cyclobutabenzenes $^{2,3)}$ involving very similar synthetic operations, we report here our preliminary results, in so far as they are based on the 1,1'-bicyclobutenyl described by Heinrich and Lüttke $^{4,5)}$.

Although <u>4</u> in THF/pentane solution (2h, sealed tube, 60° C) failed to react with cyclopropene to give <u>5a</u>, it readily cycloadds 3-cyanocyclopropene ⁶); according to TLC and ¹H-NMR spectroscopy the addition takes place stereospecifically. <u>5b</u> is isolated as colourless prisms (m.p. 71.5-73°C, m/e = 171 (M⁺)) in a not yet optimised yield of 65% and is assigned the <u>cis</u>-geometry from $(J_{6,5}+J_{6,9}) = (J_{8,9}+J_{8,5}) \approx 5$ Hz (determined from a high field ¹H-NMR spectrum in $[d_6]$ -benzene) ⁸ and from the inter-

planar angle of 40° or 105° for <u>cis-</u> or <u>trans-geometry resp.</u> <u>5b</u> is cleanly hydrogenated with Pd/C (20° C) or dimine to give <u>9b</u> (colourless prisms, m.p. 59-60.5°C) ⁸⁾. A complete ¹H-NMR analysis ⁸⁾ was possible using the epoxide <u>8b</u> (m.p. 150-151.5°C, m/e = 187 (M⁺)), which is prepared by <u>m</u>-chloroperbenzoic acid oxidation of <u>5b</u> (69%) and possesses a similar boat-shape (H(6)-C-C-H(7) 45° (<u>cis</u>) or 120° (<u>trans</u>) resp.).

The set of coupling constants confirms the <u>cis</u>-geometry. In the same way as cyanocyclopropene, although somewhat slower, the corresponding carbomethoxycyclopropene⁹⁾ was converted into the liquid product <u>5c</u> (4h, 50-60°C, CCl₄).

<u>4</u> reacts with maleic anhydride only in the presence of catalytic amounts of $CuCl_2$ in THF (50-60°C); although the yield of isolated adduct (colourless plates, m.p. 56-57°C, m/e = 204 (M⁺)) is so far only moderate (35-40%), no further adduct is to be found. For the adduct <u>6</u> $(J_{6,5}+J_{6,8}) = (J_{7,8}+J_{7,5}) = 9.5$ Hz was determined ⁸⁾. Hydrogenation over Pd/C (20°C, ethyl acetate) quantitatively produces <u>11</u> as colourless crystals ⁸⁾. With an interplanar angle of 10° or 145° for the epoxide <u>10</u> or the <u>trans</u>isomer resp., the <u>cis</u>-geometry is evident from $(J_{7,6}+J_{7,9}) = (J_{8,9}+J_{8,6}) \approx 10$ Hz ⁸⁾. Esterification with methanol (c. H_2SO_4 , $65^{\circ}C$) gives the diester <u>12</u> as a colourless oil (65-70%)⁸. Using standard conditions ¹⁰) <u>12</u> is converted into olefin derivative 13 and that in turn to the diketone 14 and the diol 15.

 $\frac{7}{2}$ is obtained cleanly and in high yield from $\frac{4}{2}$ and dimethyl acetylenedicarboxylate ²⁾ and its hydrogenation is being investigated as a source of the <u>12-15</u> analogues for the <u>trans</u>-series; via cyclopropanation or oxidation of the ester-substituted double bond, $\frac{7}{2}$ or the 1,2-dihydrocompound provide entry into activated [2.2.1]systems ¹⁾. Cyclobutadiene reacts with $\frac{4}{2}$ (EtOH, 2-3h, room temp.); however, to date, it has not been possible to isolate the adduct <u>16</u>, a potential precursor of <u>17</u>, a key [2.2.2]- σ -homobenzene.

This work was supported by a <u>Humboldt Fellowship</u> to <u>G. McMullen</u>, the <u>Deutsche</u> Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

- 1) H.-P. Schal, D. Hunkler, H. Prinzbach, in preparation.
- K.G. Bilyard, P.J. Garratt, A.J. Underwood, R. Zahler, Tetrahedron Lett. <u>1979</u>, 1815; cit. lit.
- W. Nutakul, R.P. Thummel, A.D. Taggart, J. Am. Chem. Soc. <u>101</u>, 770 (1979);
 cit. lit.
- 4) F. Heinrich, W. Lüttke, Liebigs Ann. Chem. <u>1978</u>, 1880; we thank Prof. Lüttke for a copy of his manuscript describing <u>4</u> prior to publication.
- 5) Parallel to this work, cis-/trans-[2.2.1]- and [2.2.2]-derivatives are being

approached via the [2.2]-ketones <u>i</u> and <u>ii</u> (H. Prinzbach, H.-P. Schal, D. Hunkler, Tetrahedron Lett. <u>1978</u>, 2195; I.M. Takakis, W.-C. Agosta, ibid. <u>1978</u>, 531).

- 6) T. Tsuchiya, H. Arai, H. Igeta, Chem. Commun. 1972, 1059; here generated by gasphase pyrolysis (400°C) of dimethyl 3-anti-cyano-exo-tricyclo[3.2.2.0^{2,4}]nona-6,8-diene-6,7-dicarboxylate⁷.
- 7) M.J. Goldstein, A.H. Gevirtz, Tetrahedron Lett. <u>1965</u>, 4417; S. Kagabu, Dissertation, Univ. Freiburg <u>1975</u>.
- 8) $\underline{5b}$ (360 MHz, $[d_6]$ -benzeue): $\delta = 1.05$ (t, J = 5 Hz, 7-H); 1.30 (m, 6-,8-H); 1.38 (m), 1.85 (m) (4-,10-H); 2.18 (m), 2.32 (m) (3-,11-H); 2.80 (m, 5-,9-H). <u>6</u> (360 MHz, CDCl₃): $\delta = 2.35$ (m), 2.55-2.75 (m) (3-,4-,9-,10-H); 3.12 (m, 5-,8-H); 3.35 (m, 6-,7-H). <u>8b</u> (360 MHz, CDCl₃): $\delta = 1.11$ (t, J = 5 Hz, 8-H); 1.49 (m),2.32 (m) (5-,11-H); 1.81 (m, 7-,9-H); 2.13 (m), 2.51 (m) (4-,12-H); 2.96 (m, 6-,10-H); $J_{4,4} = 13.5$; $J_{4,5} = 4$, 8.5, 9.5, 11; $J_{4,6} = 1.5$; $J_{5,5} = 11.5$; $J_{5,6} = 7.5$, 10; $(J_{7,6}+J_{7,10}) = 6.5-7$; $J_{7,8} = 5.5$ Hz. <u>9b</u> (360 MHz, CDCl₃): $\delta = 1.67-1.95$ (m, 9H, inc. $\delta 1.73$ (7-H), 1.83 (6-,8-H)); 2.34 (m, 2H); 2.6 (m, 4H). <u>10</u> (360 MHz, CDCl₃) : $\delta = 1.63$ (m), 2.22 (m) (5-,10-H); 2.14 (m), 2.50 (m) (4-,11-H); 3.20 (m, 6-,9-H); 3.27 (m, 7-,8-H). <u>11</u> (250 MHz, CDCl₃): $\delta = 1.90$ (m), 2.15 (m) (3-,4-,9-,10-H); 2.61 (m, 1-,2-H); 2.95 (m, 5-,8-H); 3.21 (m, 6-,7-H). <u>12</u> (360 MHz, CDCl₃): $\delta = 1.85$ (m), 2.01 (m) (3-,10-H); 2.17 (m, 4-,9-H); 2.60 (m, 1-,2-H); 2.96 (m, 5-, 8-H); 3.03 (m, 6-,7-H); 3.68 (s, 0CH₃).
- 9) Generated like the nitrile ⁷⁾; W. von E. Doering, G. Laber, R. Vanderwahl,
 N.F. Chamberlain, R.B. Williams, J. Am. Chem. Soc. <u>78</u>, 5448 (1956).
- 10) J.J. Bloomfield, D.C. Owsley, J.M. Nelke, Organic Reactions 23, 259 (1976).

(Received in Germany 9 July 1979)