THIS-[2.2.1]- and TRIS-[2.2.2]-o-HOMOBENZENES

Gabrielle McMullen, Gottfried Sedelmeier, Rainer Hildebrand, Hans Fritz, Horst Prinzbach *

Chemisches Laboratorium der Universität Freiburg i. Br., BRD

Abstract: Tris-[2.2.1]- and tris-[2.2.2]- σ-homobenzenes are synthesised by reaction of l, l'-bicyclobutenyl with appropriate dienophiles and hydrogenation of the adducts.

For $[2+2+2]$-cycloreversions of the type $\underline{1} \rightarrow \underline{3}$, the "homoaromatic" stabilisation of the transition states 2 is very much dependent on the length of the bridges (x). In the case of the [1.1.1]- as well as the [2.1.1]-framework, this process is thermally favoured and occurs still more readily for the cis- than for the trans-geometry ${ }^{1}$). The sterically determined limits of the "homoaromaticity" for this process (selectiv-

ity, stereochemistry) should be attained by means of the [2.2.1]- and [2.2.2]-homologues with their 11- and 12 -membered transition states resp. In view of the considerable activity in the area of cyclobutabenzenes ${ }^{2}, 3$) involving very similar synthetic operations, we report here our preliminary results, in so far as they are based on the 1, 1'-bicyclobutenyl described by Heinrich and Liuttke ${ }^{4,5 \text {). }}$

Although $\underline{4}$ in THF/pentane solution (2 h , sealed tube, $60^{\circ} \mathrm{C}$) failed to react with cyclopropene to give $\underline{5 a}$, it readily cycloadds 3 -cyanocyclopropene 6), according to TLC and ${ }^{1}{ }_{H-N M R}$ spectroscopy the addition takes place stereospecifically. 5 b is isolated as colourless prisms (m.p. $71.5-73^{\circ} \mathrm{C}, \mathrm{m} / \mathrm{e}=171\left(\mathrm{M}^{+}\right)$) in a not yet optimised yield of 65% and is assigned the cis-geometry from $\left(J_{6,5}+J_{6,9}\right)=\left(J_{8,9}+J_{8,5}\right) \simeq 5 \mathrm{~Hz}$ (determined from a high field ${ }^{1}{ }_{H-N M R}$ spectrum in [$\left.d_{6}\right]$-benzene) ${ }^{8}$) and from the inter-
planar angle of 40° or 105° for cis- or trans-geometry resp. 5 b is cleanly hydrogenated with $\mathrm{Pd} / \mathrm{C}\left(20^{\circ} \mathrm{C}\right)$ or dimine to give 9 b (colourless prisms, m.p. 59-60.5 ${ }^{\circ} \mathrm{C}$) ${ }^{8}$). A complete ${ }^{1}{ }_{H-N M R}$ analysis ${ }^{8}$) was possible using the epoxide 8 bb (m.p. $150-151.5^{\circ} \mathrm{C}$, $\left.m / e=187\left(M^{+}\right)\right)$, which is prepared by m-chloroperbenzoic acid oxidation of 5b (69\%) and possesses a similar boat-shape ($\mathrm{B}(6)-\mathrm{C}-\mathrm{C}-\mathrm{H}(7) 45^{\circ}$ (cis) or 120° (trans) resp.).

The set of coupling constants confirms the cis-geometry. In the same way as cyanocyclopropene, although somewhat slower, the corresponding carbomethoxycyclopropene ${ }^{9}$) was converted into the liquid product $\underline{5 c}\left(4 \mathrm{~h}, 50-60^{\circ} \mathrm{C}, \mathrm{CCl}_{4}\right)$.
$\underline{4}$ reacts with maleic anhydride only in the presence of catalytic amounts of CuCl 2 in THF ($50-60^{\circ} \mathrm{C}$); although the yield of isolated adduct (colourless plates, m.p. $56-57^{\circ} \mathrm{C}, \mathrm{m} / \mathrm{e}=204\left(\mathrm{M}^{+}\right)$) is so far only moderate ($35-40 \%$), no further adduct is to be found. For the adduct $6\left(J_{6,5}{ }^{+J_{6,8}}\right)=\left(J_{7,8}+J_{7,5}\right)=9.5 \mathrm{~Hz}$ was determined $\left.{ }^{8}\right)$. Hydrogenation over $\mathrm{Pd} / \mathrm{C}\left(20^{\circ} \mathrm{C}\right.$, ethyl acetate) quantitatively produces 11 as colourless crystals ${ }^{8}$). With an interplanar angle of 10° or 145° for the epoxide 10 or the transisomer resp., the cis-geometry is evident from $\left.\left(J_{7,6}+J_{7,9}\right)=\left(J_{8,9}+J_{8.6}\right) \simeq 10 \mathrm{~Hz}{ }^{8}\right)$.

Esterification with methanol (c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 65^{\circ} \mathrm{C}$) gives the diester 12 as a colourless oil (65-70\%) 8). Using standard conditions 10) 12 is converted into olefin derivative 13 and that in turn to the diketone 14 and the diol 15.

$\underline{7}$ is obtained cleanly and in high yield from $\underline{4}$ and dimethyl acetylenedicarboxylate ${ }^{2)}$ and its hydrogenation is being investigated as a source of the 12-15 analogues for the trans-series; via cyclopropanation or oxidation of the ester-substituted double bond, 7 or the 1,2 -dihydrocompound provide entry into activated [2.2.1]systems 1). Cyclobutadiene reacts with 4 (Et0H, 2-3h, room temp.); however, to date, it has not been possible to isolate the adduct 16, a potential precursor of $\underline{17}$, a key [2.2.2]- σ-homobenzene.

16

17

This work was supported by a Humboldt Fellowship to G. McMullen, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

1) H.-P. Schal, D. Hunkler, H. Prinzbach, in preparation.
2) K.G. Bilyard, P.J. Garratt, A.J. Underwood, R. Zahler, Tetrahedron Lett. 1979, 1815; cit. lit.
3) W. Nutakul, R.P. Thummel, A.D. Taggart, J. Am. Chem. Soc. 101, 770 (1979); cit. lit.
4) F. Heinrich, W. Liuttke, Liebigs Ann. Chem. 1978, 1880; we thank Prof. Lïttke for a copy of his manuscript describing \underline{I}^{4} prior to publication.
5) Parallel to this work, cis-/trans-[2.2.1]- and [2.2.2]-derivatives are being
approached via the [2.2]-ketones $\underset{\text { i }}{ }$ and ii (H. Prinzbach, H. -P. Schal, D. Hunkler, Tetrahedron Lett. 1978, 2195; I.M. Takakis, W.-C. Agosta, ibid. 1978, 531).

i

ii
6) T. Tsuchiya, I. Arai, H. Igeta, Chem. Commun. 1972, 1059; here generated by gasphase pyrolysis $\left(400^{\circ} \mathrm{C}\right)$ of dimethyl 3-anti-cyano-exo-tricyclo [3.2.2.0 $\left.0^{2,4}\right]$ nona-6,8-diene-6,7-dicarboxylate ${ }^{7}$).
7) M.J. Goldstein, A.H. Gevirtz, Tetrahedron Lett. 1965, 4417; S. Kagabu, Dissertation, Univ. Freiburg 1975.
8) $5 \mathrm{bb}\left(360 \mathrm{MHz},\left[\mathrm{d}_{6}\right]\right.$-benzene $): \delta=1.05(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 7-\mathrm{H}) ; 1.30(\mathrm{~m}, 6-, 8-\mathrm{H}) ; 1.38$ $(m), 1.85(m)(4-, 10-H) ; 2.18(m), 2.32(m)(3-, 11-H) ; 2.80(m, 5-, 9-H) .6$ $\left(360 \mathrm{MHz}, \operatorname{CDC1}{ }_{3}\right): 8=2.35(\mathrm{~m}), 2.55-2.75(\mathrm{~m})(3-, 4-, 9-, 10-\mathrm{H}) ; 3.12(\mathrm{~m}, 5-, 8-\mathrm{H}) ;$ $3.35(\mathrm{~m}, 6-, 7-\mathrm{H}) .8 \mathrm{~b}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8=1.11(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 8-\mathrm{H}) ; 1.49(\mathrm{~m}), 2.32$ (m) (5-,11-H); $1.81(\mathrm{~m}, 7-, 9-\mathrm{H}) ; 2.13(\mathrm{~m}), 2.51(\mathrm{~m})(4-, 12-\mathrm{H}) ; 2.96(\mathrm{~m}, 6-, 10-\mathrm{H})$; $\mathrm{J}_{4,4}=13.5 ; \mathrm{J}_{4,5}=4,8.5,9.5,11 ; \mathrm{J}_{4,6}=1.5 ; \mathrm{J}_{5,5}=11.5 ; \mathrm{J}_{5,6}=7.5,10 ;$ $\left(\mathrm{J}_{7,6}+\mathrm{J}_{7,10}\right)=6.5-7 ; \mathrm{J}_{7,8}=5.5 \mathrm{~Hz} \cdot \underline{9 b}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8=1.67-1.95(\mathrm{~m}, 9 \mathrm{H}$, inc. $81.73(7-\mathrm{H}), 1.83(\mathrm{G}-, 8 \mathrm{H})) ; 2.34(\mathrm{~m}, 2 \mathrm{H}) ; 2.6(\mathrm{~m}, 4 \mathrm{H}) .10\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $: 8=1.63(\mathrm{~m}), 2.22(\mathrm{~m})(5-10-\mathrm{H}) ; 2.14(\mathrm{~m}), 2.50(\mathrm{~m})(4-, 11-\mathrm{H}) ; 3.20(\mathrm{~m}, 6-, 9-\mathrm{H}) ;$ $3.27(\mathrm{~m}, 7-, 8-\mathrm{H}) .11\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.90(\mathrm{~m}), 2.15(\mathrm{~m})(3-, 4-, 9-, 10-\mathrm{H})$; $2.61(\mathrm{~m}, \mathrm{l}-, 2-\mathrm{H}) ; 2.95(\mathrm{~m}, 5-, 8-\mathrm{H}) ; 3.21(\mathrm{~m}, 6-, 7-\mathrm{H}) .12(360 \mathrm{MHz}, \mathrm{CDC1} 3): 8$ $=1.85(\mathrm{~m}), 2.01(\mathrm{~m})(3-, 10-\mathrm{H}) ; 2.17(\mathrm{~m}, 4-, 9-\mathrm{H}) ; 2.60(\mathrm{~m}, 1-, 2-\mathrm{H}) ; 2.96$ (m, 5-, $8-\mathrm{H}): 3.03(\mathrm{~m}, 6-, 7-\mathrm{H}) ; 3.68$ ($\mathrm{s}, 0 \mathrm{CH}_{3}$).
9) Generated like the nitrile ${ }^{7}$) W. von E. Doering, G. Laber, R. Vanderwahl, N. F. Chamberlain, R.B. Williams, J. Am. Chem. Soc. 78, 5448 (1956).
10) J.J. Bloomfield, D.C. Owsley, J.M. Nelke, Organic Reactions 23, 259 (1976).
(Received in Germany 9 July 1979)
